
ANNEX 2 Traceability

1 Introduction

1.1 What is traceability?

ISO 8402 definition:

"The ability to retrieve
• history
• usage
• localization of item(s) or similar activity(ies)

 by means of a registered identification."

TMWG definition:

"Traceability is a mechanism to link all the deliverables in the various stages of
the methodology. It enables a modeller to clearly identify at what stage in the
process he has reached and where a particular deliverable was created."

1.2 Why is traceability needed?

Traceability is necessary to enable modellers and developers to demonstrate to their
clients which of their business requirements have been met.

Traceability is one the major quality criteria of any modelling/software development.

Traceability is needed by the modellers:
- to help them to find their way in the modelling process,
- to facilitates queries in a modeling approach.

In the context of message development, traceability is useful to facilitate future
modifications of the messages.

Within the UN/CEFACT Unified Modeling Methodology, the requirement list is the
formalisation of what the clients want and each of the requirements has a unique
reference number and status which enables developers to indicate if the requirement
has been met or not.

1.3 Traceability Items

Definition of Traceability Item

"Any artifact, whether it is a textual or model item, which needs to be
explicitly traced from another artifact in order to keep track of the
dependencies between them."

In addition to items defined as deliverables of Business Process Modelling, it is
necessary to capture and track the attributes of, and traceability between, many other
kinds of item. These other traceability items include issues, assumptions, requests etc.

Capturing and tracking these other kinds of traceability item will help the effective
management of the Business Process Modelling project.

1.4 Implicit and Explicit Traceability

There is a certain amount of traceability implicit in any modelling process. This is
supplied by the formal relationships between the artifacts in the process. It provides a
level of traceability which allows impact analysis to be undertaken using the information
held in the models.

Implicit relationships are fundamental to the modelling process and benefit from being
built as a natural part of the modeller’s work. These relationships are central to the
modelling process and are constructed, and maintained, as the models are matured.

Implicit traceability is limited to the relationships available in the modelling method.

Some materials used in the modelling process are related items which may be directly
related to one of the artifacts, to more than one artifact, or to a workflow, in the Business
Process Model that need to consider them. It is therefore necessary to have an explicit
traceability to link all these items into a single hierarchy, such as is proposed below.

1.5 Possible Cost Impact

A major decision in setting up a traceability process is the level of traceability that is
required and how much explicit traceability is necessary to meet this goal. The level
chosen shall facilitate the modelling process, not complicate and restrict it.

The addition of explicit traceability to Business Process Modelling could have a
significant cost impact, especially when the long-term cost of populating and maintaining
this additional information is considered. It is essential to establish an appropriate level
of explicit traceability, one which gives a justifiable added value advantage in balance
with the cost.

2 Traceability Identifiers

To answer the modeller's needs for traceability, TMWG is proposing that all workflows
and artifacts produced should be identified by a traceability identifier. This explicit
mechanism is one of many mechanisms required in a complete traceability strategy. It is
independent of the modelling method used and is of low cost to implement. It includes a
basic facility to trace related items.

2.1 Naming/numbering convention

A naming/numbering convention is proposed that should ensure bottom-up and top-
down traceability of the artefacts produced in the various workflows in the UMM.

The following chart summarises the convention used for the different types of traceability
item. These are explained in the further, more detailed, text.

WORKFLOW ITEMS which may contain
Business Domain Modelling e-Business Requirements Analysis
D-<name>-<number> D-<name>-<number>

.E-<name>-<number>
D-<name>-<number>
.E-<name>-<number>
.Z-<number>

is followed by…, for… is followed by…, for… is followed by…, for… ARTIFACT
.R .R Requirement List
.R-<number> .R-<number> Requirement
.G .G Glossary
.U-<name>-<level>-<number> .U-<name>-<level>-<number> Use Case
.U-<name>-<level>-<number>
.A-<number>

.U-<name>-<level>-<number>

.A-<number>
Activity Diagram

.U-<name>-<level>-<number>

.S-<number>
.U-<name>-<level>-<number>
.S-<number>

Sequence Diagram

.C -<number> .C -<number> Class Diagram
.C+ -<number> .C+ -<number> .C+ -<number> Class Diagram

(whole system)
followed by…, when there is… followed by…, when there is… followed by…, when there is… SUPPLEMENTAR

Y
.T -<number> .T -<number> .T -<number> Related Item

3 Glossary of Traceability Types

3.1 WorkFlow Items

Type D: Workflow i: Business Domain Modelling
A business domain modelling is identified by the key letter D followed by a name and a
unique number.

D-<name>-<number>
note: <number> is a unique number

An example is
D-purchasing-1

Type E: Workflow ii: e-Business Requirement
An e-business area is included into a business domain.
It is identified by the key letter E followed by a name and a unique number within the
domain. So an e-business area which is part of business domain D-<name>-<number>
will be referred to as

D-<name>-<number>.E-<name>-<number>
note: <number> is a sequential number within a domain

An example of an e-business area is:
D-purchasing-1.E-order from catalog-1

Type Z: Workflow iii: Analysis
An analysis workflow relates to an e-business area within a business domain.
It is identified by the key letter Z followed by a sequence number. So an analysis is in an
e-business area which is part of a business domain will be referred to as

D-<name>-<number>.E-<name>-<number>.Z-<number>
note: <number> is a sequential number

An example of an Analysis is:
D-purchasing-1.E-order from catalog-1.Z-2

3.2 Artifact Items

Type R (i): Requirement list
A requirement list is identified by the key letter R.
A requirement list from the business domain modeling workflow will be referred to as:

D-<name>-<number>.R
A requirement list developed in an e-Business Requirements workflow within a business
domain will be referred to as:

D-<name>-<number>.E-<name>-<number>.R

Type R (ii): Requirement
A requirement within a requirement list has a unique requirement number and will be
referred to as:

D-<name>-<number>.R-<number>
or

D-<name>-<number>.E-<name>-<number>.R-<number>

An example is:
D-purchasing-1.R-10 or D.purchasing-1.E-order from catalogue-1.R-14

Type G: Glossary
A glossary is identified by the key letter G.
A glossary from a business domain modeling workflow will be referred to as:

D-<name>-<number>.G

A glossary from an e-business area within a domain will be referred to as:
D-<name>-<number>.E-<name>-<number>.G

Type U: Use case
A Use Case is identified by the key letter U followed by a name, a level (defined by an
integer, in general less than ten) and a unique contextual number.

U-<name>-<level>-<number>
note: <number> is a unique number

So a use case attached to a business domain will be referred to as:
D-<name>-<number>.U-<name>-<level>-<number>

Examples are:
D-purchasing-1.U-purchasing-1-1
D-purchasing-1.U-specify product-2-1
D-purchasing-1.U-source potential suppliers-2-2

A Use Case attached to an e-business area will be referred to as:
D-<name>-<number>.E-<name>-<number>.U-<name>-<level>-<number>

Examples are:
D-purchasing-1.E-order from catalog.1.U-purchasing-1-1

D-purchasing-1.E-order from catalog.1.U-specify product-2-1
D-purchasing-1.E-order from catalog.1.U-source potential suppliers-2-2

A use case is described by a diagram and a text description.The same identifier should
be used in both the use case diagram and the completed use case template.

Type A: Activity diagram
In general there is only one activity diagram associated with a Use case. In some
complex cases, there may be more than one.
An Activity Diagram is identified by the key letter A followed by a unique contextual
number.

A-<number>
note: <number> is a unique number

So an Activity Diagram attached to a use case will be referred to as:
D-<name>-<number>.U-<name>-<level>-<number>.A-<number>

in the business modeling workflow
or
D-<name>-<number>.E-<name>-<number>.U-<name>

-<level>-<number>.A-<number>
in an e-business requirements workflow

Examples are:
D-purchasing-1.U-purchasing-1-1.A-1
D-purchasing-1.E-order for catalog-1.U-purchasing-1-1.A-1
D-purchasing-1.E-order for catalog-1.U-purchasing-1-1.A-2

Type S: Sequence diagram
A Sequence Diagram is identified by the key letter S followed by a unique contextual
number.

S-<number>
note: <number> is a unique number

Several sequence diagrams may be developed for each use case. So a Sequence
Diagram attached to a use case will be referred to as:

D-<name>-<number>.U-<name>-<level>-<number>.S-<number>
in the business modeling workflow

or
D-<name>-<number>.E-<name>-<number>.U-<name>

-<level>-<number>.S-<number>
in an e-business workflow.

Examples are:
D-purchasing-1.U-purchasing-1-1.S-1
D-purchasing-1.E-order for catalog-1.U-specify product-2-1.S-1
D-purchasing-1.E-order for catalog-1.U-specify product-2-1.S-2

Type C: Class diagram
A Class Diagram can be related either to a use case in an e-business requirement or
analysis workflow, or alternatively to an e-business system in the analysis workflow.
A Class Diagram related to a use case is identified by the key letter C followed by a
unique contextual number.

A class diagram related to the whole system is identified by C+ followed by a unique
number.

C-<number> or C+-1
note: <number> is a unique number

A Class Diagram will be referred to as:
D-<name>-<number>.E-<name>-<number>.U-<name>-<level>

-<number>.C-<number>
or
D-<name>-<number>.E-<name>-<number>.Z-<number>

.U-<name>-<level>-<number>.C-<number>
or
D-<name>-<number>.E-<name>-<number>.Z-<numbe>.C+

for the system use case.

Examples are:
D-purchasing-1.E-order for catalog-1.U-specify product-2-1.C-1
D-purchasing-1.E-order for catalog-1.Z-2.C+-1

3.3 Supplementary Items

Type T: Related Item
A Related Item is any piece of relevant material that is not a direct ouput of the modelling
process but which can be related to any workflow or artifact of the modelling process.
A Related Item is identified by the key letter T followed by a unique contextual number.

T-<number>
note: <number> is a unique number

This identifier is attached to the end of the appropriate identification of the model item
with which the Related Item is associated. If the Related Item is associated with more
than one model item, it is associated with the 'parent' model.item

So a related item associated with a use case attached to a business domain will be
referred to as:

D-<name>-<number>.U-<name>-<level>-<number>.T-<number

4 Alternative presentation

Rather than to use long names with separators, it may be more efficient to embed in
each diagram a traceability table.

Examples

Example of a requirement list attached to a business domain.
Name Level Number

WORKFLOWS
i:Business Domain modeling Purchasing 4
ii:e-business requirements
iii:Analysis

ARTIFACTS
Requirement List R
Glossary
Use case
Activity diagram
Sequence Diagram
Class diagram

Example of a sequence diagram attached to a use case, it-self attached to an Analysis
within an e-business area.

Name Level Number
WORKFLOWS

i:Business Domain modeling Purchasing 4
ii:e-business requirements Order from catalog 5
iii:Analysis Order from catalog 2

ARTIFACTS
Requirement List
Glossary
Use case Get quote 2 3
Activity diagram
Sequence Diagram S 2
Class diagram

Example of a class diagram attached to a use case from Analysis within an e-business
area.

Name Level Number
WORKFLOWS

i:Business Domain modeling Purchasing 4
ii:e-business requirements Order from catalog 5
iii:Analysis Order from catalog 2

ARTIFACTS
Requirement List
Glossary
Use case Get quote 2 3
Activity diagram
Sequence Diagram
Class diagram C 1

Example of a system class diagram from an Analysis within an e-business area.
Name Level Number

WORKFLOWS
i:Business Domain modeling Purchasing 4
ii:e-business requirements Order from catalog 5
iii:Analysis Order from catalog 2

ARTIFACTS
Requirement List
Glossary
Use case
Activity diagram
Sequence Diagram
Class diagram C+ 1

C+: System Class Diagram

ANNEX 3 Glossary and Requirements List Template

A business modelling project Glossary captures any terms and acronyms the reader
might need to understand about the business domain. The Glossary is maintained in a
running list by the facilitator throughout the requirements gathering/modelling process.
This document is used to define terminology associated with business process modelling
as well as terminology specific to the business domain, explaining terms (or groups of
terms from a sub-business domain) that may be unfamiliar to the reader of the use-case
descriptions or other project documents. Often, this document can be used as an
informal data dictionary, capturing data definitions so that use-case descriptions and
other project documents can focus on what the system shall do with the information.
Reference may be made to external documents that give such details.

In the adoption of the Unified Process to meet the business process modelling needs of
UN/CEFACT, several terms considered to be more appropriate for UN/CEFACT are
substituted for the terms typically used in the Unified Process. Annex 1, Modelling
methodology Glossary, identifies such terms and defines them in the context of this
document. These terms should be included in the Glossary of every business modelling
project. Annex 1 also illustrates the format of the business modelling project Glossary.

The Requirements List provides an artifact for storing discrete, measurable business
requirements and constraints. As requirements and constraints are discovered in
performing the modelling steps they are added to this running list by the facilitator of the
corresponding workflow. Note: requirements shall be referenced in all modelling
artifacts, and if necessary, each requirement should reference modelling artifact(s) that
are based on it.

Requirements List Identifier
 D-<name>-<number>.R or D-<name>-<number>.E-<name>-<number>.R

Req. # Statement Source Date Status
Sequential
number.

Unique to
this domain
or this
e-business
requirement
area.

Where this
requirement
came from
example:
Congressional
Order #245

Domain
Business
needs
etc

The current state.
Example: open,
discontin-ued, active

ANNEX 4 Use Case Specification Template

Use Case Name The name of this use case.
Traceability Identifier See Annex 2 for details

Use Case Description The description should briefly convey the role and purpose of the
 use case.
 A single paragraph should suffice for this description.

Actors List the Actors who participate in the use case.

Performance Goals A specification of the metrics relevant to the use case and a
definition of their goals.
(Non-functional requirements may be a source of performance goals)

Name of performance goal
A brief description of the performance goal.

Preconditions State the conditions which shall be met prior to commencement of the
use case.

Postconditions State the conditions which now apply as a result of completion of the
use case scenario.

Scenario A textual description of the scenario the use case represents.
The scenario should describe what the business does to deliver value to a
business actor, not how the business solves its problems.
Begins when, i.e., name of the first step in the scenario

A brief description of the step
Name of next step in the scenario
A brief description of the step. etc.

Ends when, i.e., name of the last step in the scenario
A brief description of the step

Alternative Scenario Describe any alternatives to the above scenario

Special Requirements The special requirements of the use case are included here.
These are requirements not covered by the scenario as it has been
described in the sections above.
 (Non-functional requirements may be a source for special requirements.)

Name of special requirement
A brief description of the special requirement

Extension Points Extension points of the use case.
Name of extension point
Definition of the location of the extension point in the flow of
events

Requirements Covered References to all requirements that relate to this use case, by Req. #

ANNEX 5 Use Case checklist

Checkpoints for the Use-Case Model
• Consider if use cases should be factored out into separate use cases.
• Consider developing a new use case for alternative flows/exceptions.
• Consider generalising a use case to enhance reusability.
• Consider defining a new Actor/Role to enlarge the domain of application/reusability.
• Consider combining use cases where similar.

• Do the use cases conform to the business you want them to describe?
• Have all the use cases been found? The use cases should together perform all
activities within the business.
 • Are all activities within the business included in at least one use case?
 • Is there a balance between the number and the size of the use cases?
• Is each use case unique? If not, consider merging it with a similar use case.
• Do the diagrams appear to be well-structured?
• Are the diagrams so large and complex that they should be broken down into several
smaller diagrams?

Checkpoints for Actors

• Have all actors been found?
• Does each (human) actor express a role, not a person? Try to name at least two
people that can act as the actor.
• Does each actor model something outside the business?
• Is each actor involved with at least one use case? If not, remove it.
• Does each actor represent one role? If not, you should probably split the actor into
several actors, each expressing a different role.
• Does each actor have an explanatory name and description that is understandable to
people outside the business modelling team?

Checkpoints for Use Cases

• Is its name and brief description clear and easy to understand, even to people outside
the business-engineering team?
• Is each use case complete from an outside (actor’s) perspective?
• Is each use case involved with at least one actor?
• Is each supporting use case involved with at least one actor? If not, it has to be initiated
by an internal event, and does not have to interact with an actor to perform its activities.

For abstract use cases, you may add:

• Is the use case substantial enough to be an abstract use case on its own?
• Does it contain logically related activities?
• Is there a reason for the use case to exist?

Checkpoints for Use-Case Reports

• Is the use-case workflow clear and understandable?

• Is the wording informal enough to be understood by people outside the project team?
• Does it describe the workflow, and not just the purpose of the use case?
• Does it describe the workflow from an external viewpoint?
• Does the use case perform only activities inside the business?
• Are all possible activities that belong to the use case described?
• Are only actors that interact with the use case mentioned?
• Are only activities that belong to the use case described?
• Does it mention only use cases with which it is connected?
• Does it clearly indicate when the order of activities is not fixed?
• Is the workflow well-structured?
• Are the start and end of the workflow clearly described?
• Is each extends-relationship described clearly so that it is obvious how and when the
use case is inserted?

Checkpoints for Supplementary Business Specifications

• Are all supplementary business definitions listed in the document general, in the sense
that none of them should pertain to one single use case or business entity?
• Are all relevant business rules listed or referred to?
• If the business rules are not in the document, are the references correct and easily
accessible for project members?

Checkpoints for the Glossary

• Does each term have a clear and concise definition?
• Is each glossary term included somewhere in the descriptions of the use cases? If not,
it may imply that a use case is missing or that the existing use cases are not complete. It
is more likely, though, that the term is not included because it is not needed. In that
case, you should remove it.
• Are terms used consistently in the brief descriptions of actors and use cases?
• Does a term represent the same thing in all use cases?

ANNEX 6 Metamodel of the UN/CEFACT Modelling Methodology

Business Domain Meta Model Class Diagaram

Annex 6.2 e-Business Requirements Meta Model Class Diagram

Annex 6.3 Analysis Meta Model Class Diagram

Annex 6.4 Design Meta Model Class Diagram

ANNEX 7 Naming & Style Guide

Typical Usage

TermDefinition
Term
Definition

Type of Participation
(from Logical View)

Business Class Attribut

Glossary

*

1..*

*

1..*

Document
Titel
Citation Information

Stakeholder Need
Stakeholder
Need

Organisation
(from Logical View)

UserType
UserType Information Type

1..*

1..1

1..*

1..1

Business Object Class

1..*1..*

1..*1..1 1..*1..1

Business Domain
Name
Scope
Business opportunity
Boundary of the business domain 0..*0..*1..1 1..*1..1 1..*

0..*

0..*

0..*

0..*

Reference

0..*0..*

1..*

0..*

1..*

0..*

Authority

0..*

*

0..*

*

**

Actor
(from Logical View)

Business Use Case Description

Business Class Diagram

1..*

1..*

1..*

1..*

Business Activity Diagram

Business Use Case0..*

1..1

0..*

1..1

1..*

1..*

1..*

1..*

1..11..1

0..10..1
0..1

1..1

0..1

1..1

Introduction

ThisA style guide tells you what the Business models you are creating should look like in
a physical sense. Business models are no different from other documents in this sense.
It begins with the general rules and syntax for naming and description of typical
modeling elements. It follows with a section on the conventions applied to typically used
diagrams. Finally it concludes with a description of the rules that apply specifically to the
model of an individual commercial transaction as a UML activity model.
 The style guide is complete in the sense that it covers rules for layout and naming that
will work as stated. It is incomplete, at this point, in that all examples have not been
exhaustively covered. Additionally, processes themselves change over time to adjust to
changing requirements and newly discovered insights. This style guide will also adapt to
such changes. Following the style guide will help to make any changes to defined
processes, less capricious reasoning and more consistency in application.

Scope This annex specifies style conventions for layout and documentation of business
process models built in accordance with the e-Business Collaboration Modeling
Metamodel.Ref XXX

Style Conventions

Typographical and language conventions are used to convey specific meanings.

Typographical Conventions

The use of a bold/italic font indicates a UML or business process metamodel entity
name.

Language Conventions

This specification adopts the conventions expressed in the IETF’s 1 RFC 2119 “Key
Words for Use in RFCs to Indicate Requirement Levels.” The key words “SHALL”,
“SHALL NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as
described in RFC 2119.

General Naming and Syntax Rules

The following general rules apply to all business modeling products:

Font

• All lettering on UML diagrams shall be formatted to use the Arial 8pts, black font.
• example: Arial 8pts, black font

General Syntax

1 http://www.ietf.org

• All specification names shall be syntactically compliant with the OCL version 1.0
specification. This rule may be relaxed for readability and user understanding for the
Business Domain Modelling and e-Business Requirements workflows.

• Abbreviations (including acronyms) shall not be used for naming any elements of the
model except for well-known standards (e.g., ID).

Roles and Role Names

• A role name shall not be a partner type.
• A role description shall be the approved description corresponding to the selected

role name.
• The role description cannot be changed or extended without first being approved by

the technical modeler .
• Roles shall be defined to be one of the following types:

1. Organizational: Authority to perform on a company level. If you want to
authenticate the entire business document.

2. Employee: Authority to perform on an individual level. If you want to authenticate
a role (digital signature). If you want to authorize specific data.

3. Functional: Can be either an organizational or an employee role.

Naming of Classes and Properties

• No use of "type" or "class" for names of entities and properties.
• No properties shall have "yes", "no" values.
• Use the word "Identifier" to prefix all fundamental business data entities that are used

to identify real world concepts e.g. ProprietaryProductIdentifier. Identifiers are not
enumerated as values for a fundamental business data entity.

• Use the word "Code" to prefix all fundamental business data entities that are used to
identify real world concepts with a literal (symbol) e.g.
GlobalPartnerClassificationCode. A codes list is enumerated as the values for a
Fundamental Business Data Entity.

• Use the word "Global" to precede globally administered entities.
• Use the world "National" to precede nationally administered entities.
• Use the word "Proprietary" to precede proprietary administered entities.
• Use "is" to prefix business properties that are boolean (True/False) valued, e.g.

isOnSale.
• Keep tense out of business property names e.g. use "priceChangeDate" and not

"PriceChangedDate" as the property can then be used for both past and future
business events.

• All non-global e.g. proprietary, national, regional, geographic, identifiers and codes
shall be business data entities. They shall comprise two fundamental business data
entities. One specifying the administering authority and one specifying the identifier.

• Do not use "yes", "no", "true", "false" etc. as state transitions out of conditional
states. Use active verbs e.g. accepted, not accepted, verified, not verified etc.

• Only name business properties if they are used to differentiate between associations
to the same target class, or when they provide context but no attributes to a more
general class.

• Using the name of a Class with a lower case first letter to reference objects that have
un-named roles. This is specified in section 2.3, page 15 of the book titled "The
Object Constraint Language.”

• All business properties of type “CountableAmount” shall start with the words
“numberOf” e.g. “numberOfProducts”.

• Class names shall comprise compacted proper names (i.e. no white space or special
character delimiters) e.g. BusinessRole. The first letter of each name shall be
capitalized. This rule does not apply to association class stereotypes in the
metamodel. These class names shall follow the syntax for associations. (Applies to
BOV, FSV, and ISV. May be relaxed for BOM and BRV.)

Associations

• The first letter of an association name is small. The rest of the name is compacted
proper names (i.e. no white space or special character delimiters) e.g.
businessProcessFlow. (Applies to BOV, FSV, and ISV. May be relaxed for BOM and
BRV.)

• Use singular names for associations with singular cardinality.
• Use plural names for associations with multiple cardinality.
• Association naming phrases. If a name is associated with a specific UML role then

the phrase shall start with the word “the”. If the name is associated with the general
role then do not use the word “the” to precede the phrase.

• All associations shall have cardinality specified on the role of the association.

Operations
• The first letter of an operation name is small. The rest of the name is compacted

proper names (i.e. no white space or special character delimiters) e.g.
createQuickerly. (Applies to BOV, FSV, and ISV.)

• Operation names shall be verbs e.g. add().
• Operation argument names (when needed) shall be nouns e.g. PurchaseOrder.

Stereotypes

• Stereotype names shall syntactically match the e-business process metamodel
stereotype names or the UML stereotype names. The UML stereotype names are all
lower case. The e-business metamodel stereotype names are compacted proper
names. (Applies at all model levels.)

Conditional statements
• Preconditions, post-conditions and invariant constraints shall be expressed using text

and the OCL. (Applies at all Models levels. May be relaxed for BOM. Should be
applied for BRV.)

Diagram Layout Rules and Conventions

Use Case Diagrams

• U…[Section to be written]……..
Class Diagrams

• For unidirectional navigational aggregation roles the name of the role shall be the
name of the “A” role. Do not name the general role. This is particularly true for
Business Data Entities.

• Business data entity attributes shall not be specified in attribute compartments. All
attributes shall be specified as unidirectional aggregation associations. (Note:
Modeling as association facilitates management of optional properties and the
automatic generation of specifications.)

• Hide operation compartments when there are no operations defined for a class.
• Hide attribute compartments since there will be no attributes defined for a class.

Activity Diagrams

• Activity diagrams may span multiple vertical pages.
• Layout activity diagrams on portrait oriented pages.
• It is recommended that multiple transitions with guard conditions be shown from

activities rather than using decision activities. This reduces clutter in the diagrams.
• Activity diagrams shall have one initial state and can have multiple final states.
• Asynchronous commercial transactions in activity diagrams shall be represented a

single object flow.

Sequence Diagrams

• Sequence diagrams may span multiple pages. It is recommended that they do not
span multiple vertical pages.

• Layout sequence diagrams on landscape oriented pages.
• Interactions shall be indicated as simple interactions.
• Response interactions shall be indicated as simple interactions.
• A sequence diagram shall have all the network component interactions that

implement one commercial transaction. This includes all agent and service
interactions.

Commercial Transactions and Commercial Transaction Activity Diagrams

Rules in sections two and three apply for all commercial transaction activity models.
There are several other specific rules and conventions that make consistent commercial
transaction modeling possible. These are outlined below.

Initiator / Responder (applied to roles):
• The initiator is the role that is responsible for managing the start state.
• The initiator is on the left by convention for readability and diagramming.

Activity and Business Document Names

• The activity names shall always be in the form <Verb><Noun>
• Business Document names shall be in the form <Noun><Verb>

The verbs should be selected from the following table. A new verb can be used if the
business requirement is semantically different from any of the existing verbs.

Initiating
B

usiness
A

ctivity

R
esponding

B
usiness

A
ctivity

B
usiness

D
ocum

ent
R

equest

B
usiness

D
ocum

ent
R

esponse

Business
Transaction

1. Cancel
2. Change
3. Create

Accept
1. Cancellation
2. Request
3. Change

Acceptance

Request /
Confirm Request Confirm Request Confirmation

Query /
Response Query Process Query Response

Notification 1. Notify
2. Transfer Process 1. Notification

2. Notification NA

Information
Distribution Distribution Receive Notification NA

Process Flow Patterns for Commercial Transactions

• A Business Document shall always be in the same swimlane as the Business Activity
that creates it.

• The process flow is always counter clockwise. The design rational for this is so that it
more closely models the flow of a transaction as opposed to an interaction.

• There shall always be exactly two swimlanes.
• There shall always be exactly one initial state named START.
• There shall always be exactly two final states named FAILED and END.
• The guards on the two end states are always named SUCCESS and FAILED.
• The names of Activities, Business Documents, and Role Names shall be in proper

case. This allows us to easily read OCL compliant names when we use them to
create business constraints.

• Guards shall be in uppercase so that they can be used as values in OCL syntax.

Initial and Final States

• The initial and final states describe the state of the business process support system
• States conditions are named in the form <Noun><Property><Verb>
• The <Noun> can be a Business Data Entity and the property is named “Status” in the

form BDE Status <Verb>. Purchase Order Status Exists
• The <Noun> can be a Business Data Entity with no named property in the form BDE

<verb>. Purchase Order Exists

• The <Property> can be the name of a business process support system with
no <Noun> in the form <Property><Verb>. Signature Authorized.

• All states on the diagrams shall be in the same swimelane as the initiating activity.
This is because a process cannot start or terminate on the responding role’s
swimlane.

• Every FAILED end state shall have the Notification of Failure as one of the
conditions.

Annex 8 Describing addresses

Addresses are basic to most business systems. We need to record location information
and how to contact our customers, suppliers, and employees. By recording this
information, we are able to send letters, invoices, and purchase orders, and to contact
them by phone, fax, or e-mail. One way to model this is shown in the figure below. Here
we have an Address with the basic contact information, addressee's name, email
address, and phone numbers. It also owns a group of address lines to give us a flexible
way to record all the different kinds of addresses we may need.

Basic address diagram

Using addresses in SanFrancisco

The SanFrancisco class that records this information is called Address. In SanFrancisco
the same kind of address object is used both for the company's addresses and for the
addresses of the company's business partners. Address contains the basic contact
information, a collection of free form address lines and references to a country, and
optionally a user-defined "area." (You can think of area as an application-defined
equivalent to a region.) The following diagram shows the structure of a SanFrancisco
address.

SanFrancisco address implementation model

Working with address information

The following table shows the names and types of the various attributes of an address.
Most are Strings. The exceptions are Country and Area which are references to
persistent objects. SanFrancisco does not impose any required format on the Strings,
although LocaleInformation should conform to the standard for Java locales ("en_US",
for example).

Address attributes table

Attribute Name Type Can
Update? Purpose

Addressee String Y The person this location is associated with
PostalCode String Y The Zip Code / PostalCode for this location
PostalCode
Location String Y The city for this location

PhoneNumber String Y The phone number for this location
FaxNumber String Y The fax number for this location
EMailAddress String Y The email address for the addressee
Locale
Information String Y The locale code for this location

Country Country Y A reference to the country for this location

Area Area Y A reference to a user-defined area (sales,
shipping, etc.)

At first glance you might think that the use of a single PhoneNumber is a limitation, but
you will see that, in places where addresses are used, an open-ended collection is
maintained. Therefore, you can have a separate address object for each phone number
you need to maintain for a company or business partner. This could also be handled by
using the generic address line support to add address lines that represent additional
phone numbers.

Working with address lines

In addition to the String attributes, a SanFrancisco address has a collection of address
lines. Each address line is a String. Each address line has a key, which is defined by the
user or application. If all you want to do is store an image of an address label, you might
key your address lines with sequential numbers; if you want more meaningful access to
the address information, use keys like "street address", "city", "state", and so on.

Class Address
public void addAddressLineBy(String addressLine, String key)
public boolean containsAddressLine(String addressline)
public boolean containsAddressLineKey(String key)
public Iterator createAddressLineIterator()
public String getAddressLineAt(Iterator position)
public String getAddressLineBy(String key)
public String getAddressLineKey(String addressLine)
public String getAddressLineKeyAt(Iterator position)
public DMap getAddressLines()

The next example shows how to construct a display address from an Address object.

Example -- Display address

public void displayAddress() throws SFException {
// display a typically formatted U.S. address

Address theAddress = CompanyContext.getActiveCompany().getPrimaryAddress();
System.out.println(theAddress.getAddressee());
System.out.println(theAddress.getAddressLineBy("addr1"));
String addr2 = theAddress.getAddressLineBy("addr2");
if (addr2 != null) {

System.out.println (addr2);
}
System.out.println(theAddress.getAddressLineBy("city")

+ ", "
+ theAddress.getAddressLineBy("state")
+ " "
+ theAddress.getPostalCode());

}
Finding addresses

Unlike many persistent Entities in SanFrancisco, addresses are not maintained by
controllers. Instead, addresses are explicitly associated with the business object whose
address it is. A company object will own its addresses and a business partner will own
its address(es) and each provides methods to access and maintain addresses.

For more information about configuring a new address, see Configuring an address. For
more information about extending the address object to provide additional data or
functionality, see Extending an address.

ANNEX 9 References

ISO/IEC IS 14662 Information Technologies - Open-edi reference model

The Unified Modeling Language User Guide. Jacobson, Booch, Rumbaugh, 1998,
Addison Wesley-ISBN 0-201-57168-4

The Unified Software Development Process. Jacobson, Booch, Rumbaugh, 1999,
Addison Wesley Longman, ISBN 0-201-57169-2

Use Cases - Requirements in Context, Daryl Kulak and Eamonn Guiney, Addison-
Wesley, 2000, ISBN 0-201-65767-8

The Unified Modeling Language Reference Guide, Rumbaugh, Jacobson, Booch, 1999,
Addison-Wesley,

Applying Use Cases: A Practical Guide, Schneider and Winters, 1998, Addison Wesley
Longman, ISBN0-201-30981-5

Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design, C.
Larman, 1997, Prentice Hall

UML in a Nutshell: A Desktop Quick Reference, Sinan Si Albir, 1998, O'Reilly &
Associates, Inc., ISBN 1-56592-448-7

e-Business Collaboration Modelling Metamodel, Draft 2.0, BCF#7, Edifecs Commerce.

e-Business Collaboration Design patterns, draft 2.0, BCF#8, Edifecs Commerce

FRENCH REFERENCES

Modélisation Objet avec UML, Pierre Alain Müller, 1997, Wrox Press

UML dans vos projets, Nathalie Lopez, Jorge Migueis, Emmanuel Pichon, 1998, Eyrolles

UML en action, Pascal Roques, Frank Vallée - Eyrolles

Web - http://www.essaim.univ-mulhouse.fr/uml

