

Distr. GENERAL

ECE/TRANS/WP.11/2009/17 17 August 2009

RUSSIAN

Original: ENGLISH

ЕВРОПЕЙСКАЯ ЭКОНОМИЧЕСКАЯ КОМИССИЯ

КОМИТЕТ ПО ВНУТРЕННЕМУ ТРАНСПОРТУ

Рабочая группа по перевозкам скоропортящихся пищевых продуктов

Шестьдесят пятая сессия Женева, 27-30 октября 2009 года Пункты 5 b) и 6 предварительной повестки дня

ПРЕДЛОЖЕНИЯ ПО ПОПРАВКАМ К СОГЛАШЕНИЮ О МЕЖДУНАРОДНЫХ ПЕРЕВОЗКАХ СКОРОПОРТЯЩИХСЯ ПИЩЕВЫХ ПРОДУКТОВ И О СПЕЦИАЛЬНЫХ ТРАНСПОРТНЫХ СРЕДСТВАХ, ПРЕДНАЗНАЧЕННЫХ ДЛЯ ЭТИХ ПЕРЕВОЗОК (СПС), И К СПРАВОЧНИКУ СПС

Новые предложения

Предложение по поправке к пункту 2 с) іі) добавления 1 к приложению 1

Передано правительством Португалии

-

^{*} Настоящий документ представляется в соответствии с программой работы Комитета по внутреннему транспорту на 2008-2012 годы (ECE/TRANS/2008/11, пункт 2.11 а)), в котором намечается "рассмотрение предложений о внесении поправок в СПС в целях его обновления по мере необходимости".

Обоснование

В порядке удовлетворения просьбы и рекомендации совещания Подкомиссии Д2 Международного института холода (Каштелу-Бранку, Португалия, 4-5 июня 2009 года) и в целях уточнения текста по эвтектическим плитам в Соглашение о международных перевозках скоропортящихся пищевых продуктов и о специальных транспортных средствах, предназначенных для этих перевозок (СПС), предлагается включить нижеследующую поправку.

Предлагаемая поправка

Приложение 1, добавление 1, пункт 2 с) іі)

Заменить существующий текст

2....

c)

- ii) Если речь идет о транспортных средствах-ледниках, причем образцом должно служить транспортное средство-ледник, то
 - должны быть соблюдены условия, указанные в подпункте і) выше;
 - внутреннее вентиляционное оборудование должно быть сопоставимым;
 - источник холода должен быть идентичным; и
 - запас холода на единицу внутренней поверхности должен быть большим или одинаковым;

следующим текстом

2.....

c)

- ii) Если речь идет о транспортных средствах-ледниках, причем образцом должно служить транспортное средство-ледник либо:
 - а) транспортное средство-рефрижератор, но не транспортное средство с эвтектическими плитами, то
 - должны быть соблюдены условия, указанные в подпункте і) выше;
 - внутреннее вентиляционное оборудование должно быть сопоставимым;
 - источник холода должен быть идентичным; и
 - запас холода на единицу внутренней поверхности должен быть большим или одинаковым:
- либо b) транспортное средство-рефрижератор с эвтектическими плитами, то
 - должны быть соблюдены условия, указанные в подпункте i) выше;
 - внутреннее вентиляционное оборудование должно быть сопоставимым;
 - источник холода должен быть идентичным;
 - рефрижераторный блок и эвтектическая система должны быть теми же и подвергаться модификации не должны;
 - если значение К и/или средней поверхности (S) отличается от исходного оборудования (изотермический кузов транспортного средства-ледника), то холодопроизводительность (W) серийного оборудования должна быть меньшей или равной холодопроизводительности (W) исходного оборудования (изотермический кузов транспортного средства-ледника):

$$W_{cepuйнoe} \leq W_{ucxoднoe}$$
 где $W = K.S.\Delta heta$

W - холодопроизводительность, требуемая внутри кузова, средняя поверхность которого равна S, необходимая для поддержания при постоянном режиме абсолютной разности $\Delta\theta$ между внутренней температурой θ_i и средней наружной температурой θ_e , когда средняя наружная температура θ_e является постоянной.

Примечание: Когда значение $\Delta\theta$ неизвестно, оно принимается равным 25°C.

Предлагаемый комментарий к Справочнику СПС:

Примеры в случае использования эвтектических плит:

Пример 1

	Протокол испытания (Прототип)	Серийное оборудование 1	Серийное оборудование 2
Значение К	$0.20 \ Bm/m^2K$	$0.16 \text{ Bm/m}^2 \text{K}$	$0.24 \text{ Bm/m}^2 K$
Средняя поверхность (S)	100m^2	120 m^2	80 m ²
Холодопроизводительность (W)	500 Bm	480 Bm	480 Bm
$\Delta \theta$	25°C	25°C	25°C
Конечное значение К			

<u>Вывод 1</u>: Изотермический кузов площадью $120 \, \text{м}^2$ (гораздо больший) обладает меньшей холодопроизводительностью, чем прототип.

<u>**Вывод 2:**</u> Изотермический кузов площадью 80 м^2 (гораздо меньший) обладает меньшей холодопроизводительностью, чем прототип.

Пример 2

	Протокол испытания (Прототип)	Серийное оборудование 1	Серийное оборудование 2
Значение К	$0.20 \ Bm/m^2K$		
Средняя поверхность (S)	100 m^2	120 m^2	80 m ²
Холодопроизводительность (W)	500 Bm	500 Bm	500 Bm
$\Delta \theta$	25°C	25°C	25°C
Конечное значение К		0,17	0,25

<u>**Вывод 1:**</u> Изотермический кузов площадью 120 м^2 (гораздо больший) может иметь значение K равное или меньше $0,17 \text{ Bm/m}^2 K$.

<u>Вывод 2</u>: Изотермический кузов площадью 80 м^2 (гораздо меньший) может иметь значение K равное или больше $0.25 \text{ Bm/m}^2 K$.
