

# **Economic and Social Council**

Distr.: General 20 December 2011

Original: English

# **Economic Commission for Europe**

**Inland Transport Committee** 

# **World Forum for Harmonization of Vehicle Regulations**

156<sup>th</sup> session Geneva, 13–16 March 2012 Item 4.8.2 of the provisional agenda Regulation No. 117 ( Tyre – Rolling resistance, rolling noise and wet grip)

Proposal for Supplement 1 to the 02 series of amendments to Regulation No. 117 (Tyres - Rolling resistance, rolling noise and wet grip)

# **Submitted by the Working Party on Noise \***

The text reproduced below was adopted by the Working Party on Noise (GRB) at its fifty-fourth session to propose an alternative to improve the accuracy of the deceleration method. It is based on ECE/TRANS/WP.29/GRB/2011/11 as reproduced by Annex III to the report (ECE/TRANS/WP.29/GRB/52, para. 12). It is submitted to the World Forum for Harmonization of Vehicle Regulations (WP.29) and the Administrative Committee (AC.1) for consideration.

<sup>\*</sup> In accordance with the programme of work of the Inland Transport Committee for 2010–2014 (ECE/TRANS/208, para. 106 and ECE/TRANS/2010/8, programme activity 02.4), the World Forum will develop, harmonize and update Regulations in order to enhance the performance of vehicles. The present document is submitted in conformity with that mandate.

# Annex 6

Paragraph 3.5., amend to read:

## "3.5. Duration and speed.

When the deceleration method is selected, the following requirements apply:

- (a) The deceleration j shall be determined in exact dω/dt or approximate Δω/Δt form, where ω is angular velocity, t – time;
- (b) For duration  $\Delta t$ , the time increments shall not exceed 0.5 s;
- (c) Any variation of the test drum speed shall not exceed 1 km/h within one time increment."

Paragraph 4.6.2., amend to read:

#### "4.6.2. Deceleration method

The deceleration method follows the procedure below:

- (a) Remove the tyre from the test surface;
- (b) Record the deceleration of the test drum  $\Delta\omega Do/\Delta t$  and that of the unloaded tyre  $\Delta\omega_{To}/\Delta t^3$  or record the deceleration of the test drum  $j_{D0}$  and that of the unloaded tyre  $j_{T0}$  in exact or approximate form in accordance with paragraph 3.5."

Paragraph 5.1.5., amend to read:

#### "5.1.5. Deceleration method

Calculate the parasitic losses  $F_{pl}$ , in newton.

$$F_{pl} = \frac{I_D}{R} \left( \frac{\Delta \omega_{D0}}{\Delta t_0} \right) + \frac{I_T}{R_r} \left( \frac{\Delta \omega_{T0}}{\Delta t_0} \right)$$

Where:

 $I_D$  is the test drum inertia in rotation, in kilogram meter squared,

R is the test drum surface radius, in meter,

 $\omega_{D0}$  is the test drum angular speed, without tyre, in radians per second,

 $\Delta t_0$  is the time increment chosen for the measurement of the parasitic losses without tyre, in second,

 $I_T$  is the spindle, tyre and wheel inertia in rotation, in kilogram meter squared,

R is the tyre rolling radius, in metre,

 $\omega_{T0}$  is the tyre angular speed, unloaded tyre, in radian per second.

or

$$F_{pl} = \frac{I_D}{R} j_{D0} + \frac{I_T}{R_r} j_{T0}$$

Where:

I<sub>D</sub> is the test drum inertia in rotation, in kilogram meter squared,

R is the test drum surface radius, in meter,

 $j_{D0}$  is the deceleration of the test drum, without tyre, in radians per

second squared,

I<sub>T</sub> is the spindle, tyre and wheel inertia in rotation, in kilogram

meter squared,

R<sub>r</sub> is the tyre rolling radius, in metre,

 $j_{T0}$  is the deceleration of unloaded tyre, in radians per second

quared."

### Paragraph 5.2.5., amend to read:

#### "5.2.5. Deceleration method

The rolling resistance F<sub>r</sub>, in newton, is calculated using the equation:

$$F_{\rm r} = \frac{I_{\rm D}}{R} \left( \frac{\Delta \omega_{\rm V}}{\Delta t_{\rm V}} \right) + \frac{RI_{\rm T}}{R_{\rm r}^2} \left( \frac{\Delta \omega_{\rm V}}{\Delta t_{\rm V}} \right) - F_{\rm pl}$$

Where:

*I*D is the test drum inertia in rotation, in kilogram metre squared,

R is the test drum surface radius, in meter,

 $F_{\rm pl}$  represents the parasitic losses as calculated in paragraph 5.1.5.,

 $\Delta t_{\rm v}$  is the time increment chosen for measurement, in second,

 $\Delta \omega_{\rm v}$  is the test drum angular speed increment, without tyre, in

radian per second,

 $I_{\rm T}$  is the spindle, tyre and wheel inertia in rotation, in kilogram

metre squared,

 $R_{\rm r}$  is the tyre rolling radius, in metre,

 $F_{\rm r}$  is the rolling resistance, in newton.

or

$$Fr = \frac{I_D}{R} j_V + \frac{RI_T}{R_r^2} j_V - F_{pl}$$

Where:

 $I_{D}$  is the test drum inertia in rotation, in kilogram metre squared,

R is the test drum surface radius, in meter,

 $F_{pl}$  represents the parasitic losses as calculated in paragraph 5.1.5.,

 $j_V$  is the deceleration of the test drum, in radians per second

squared,

I<sub>T</sub> is the spindle, tyre and wheel inertia in rotation, in kilogram

metre squared,

R<sub>r</sub> is the tyre rolling radius, in metre,

F<sub>r</sub> is the rolling resistance, in newton."

# Annex 6, Appendix 1

Paragraph 4, amend to read:

"4. Control accuracy

...

(d) time:  $\pm -0.5$  ms

...'