# COOPERATIVE INTELLIGENT TRANSPORT SYSTEMS

LEVEL CROSSING SAFETY VISIONARY PROJECT

**Professor Jugdutt (Jack) Singh Director – Centre for Technology Infusion** 



## **MOTIVATION**

- Majority of human population live in cities urbanisation
- More than 60 metropolitan with population > 5million
  - Many will be driving cars, and the products they consume will be arriving in trucks – making gridlock the norm.
- What might the future hold?
  - Transportation infrastructure and management approaches can't handle the world's traffic.
  - In Australia, the latest estimates put the cost of time spent sitting in traffic at \$11.1 billion annually
  - In USA ~2.8b gallons of gas wasted sitting in traffic costing ~\$83b



### MOTIVATION

#### Traffic congestion is a major cause of lost productivity

 In Australia avoidable productivity cost of congestion of \$9.4b in 2005 rising to \$20.4b in 2020

#### Traffic congestion is a major cause of pollution.

 Land transport pollution accounts for around 13% of Australian Green House Gas emissions (National Greenhouse Accounts).

#### Safety

- In Australia annual national road toll is around 1,300 deaths and 32,500 serious injuries.
- Approximately 40,000 people are killed each year and ~1.7 million with critical injuries in Europe
- Annual cost related to traffic accidents total roughly US\$1 trillion



#### EMOTIONAL & ECONOMIC TOLL OF COMMUTING





 Beijing, Mexico City, Moscow, New Delhi – very high economic & emotional toll than most of the Western world cities

LA TROBE Centre for Technology Infusion
BRINGING IDEAS TO LIFE

#### WHAT CAN WE DO?

- Public transport: extension and improvement of public transport networks, parking space management, city logistics, low-speed zones, etc.
- Traffic management: integrated computer based control systems, traffic safety
- Zero emission vehicles: electrical vehicles
- Air quality and noise pollution: Usage of traffic management solutions in connection with air monitoring networks to improve air quality and noise abatement
- Logistics: Application of ICT solutions to freight traffic to reduce pollution and congestion, optimize delivery times and limit transport costs
- Urban planning: Monitoring of flows and planning of building and activities (e.g. malls, public buildings, etc.) in order to prevent congestion, reduce traffic and facilitate the use of public transport
- **Smart Grids:** Connection between energy networks and transport networks to ensure availability of alternate fuels, pollution control, etc.
- Communication Tools: innovative communication tools to improve ridership on public transport, traffic, etc.



## WAY FORWARD

Better use of existing Road capacity

# "Cooperative Intelligent Transport Systems"



## COOPERATIVE INTELLIGENT TRANSPORT SYSTEMS

#### What is Cooperative Intelligent Transport Systems?

Advanced **INFORMATION & COMMUNICATIONS TECHNOLOGIES** used to enhance **safety**, improve **mobility**, support **commerce**, and help

sustain the **environment** 

#### .... Addressing multi-modal

- Transport Safety
- Transport Productivity
- Travel Reliability
- Health & Safety
- Environmental Performance
- Informed Travel Choices
- Social Equity
- Network Operation & Resilience
- etc.





## COOPERATIVE MOBILITY CONCEPT

- Anticipating by communication
  - Efficient use of roads during heavy traffic
  - Information on road conditions and traffic flow
  - Information on behaviour of other road users
- Supported by cooperative technology
  - Vehicle-to-Vehicle and Vehicle-to-Infrastructure communication
  - Real-time personal warning and advising





## CO-OPERATIVE INTELLIGENT TRANSPORT SYSTEMS TO IMPROVE SAFETY AT LEVEL CROSSINGS

## LEVEL CROSSING COLLISIONS IN AUSTRALIA (2000 – 2009)

|                                  | Public            | road               | Privat            |                    |       |
|----------------------------------|-------------------|--------------------|-------------------|--------------------|-------|
| Statistic                        | Active<br>control | Passive<br>control | Active<br>control | Passive<br>control | Total |
| Number of collisions             | 356               | 248                | 27                | 64                 | 695   |
| Number of people fatally injured | 58                | 35                 | 0                 | 4                  | 97    |

Over 70 fatalities (1997 – 2002)



Source: ITSR

## DEATH AND INJURY BY CATEGORY EUROPE (2011)

|                                                        | Number of persons |           |       |                   |            |           |       |       |            |           |       |       |
|--------------------------------------------------------|-------------------|-----------|-------|-------------------|------------|-----------|-------|-------|------------|-----------|-------|-------|
|                                                        | Killed            |           |       | Seriously Injured |            |           | Total |       |            |           |       |       |
|                                                        | Passengers        | Employees | Other | Total             | Passengers | Employees | Other | Total | Passengers | Employees | Other | Total |
| Collisions                                             | 9                 | 3         | 3     | 15                | 33         | 11        | 5     | 49    | 42         | 14        | 8     | 64    |
| Derailments                                            | 2                 | 2         | 0     | 4                 | 43         | 2         | 0     | 45    | 45         | 4         | 0     | 49    |
| Accidents involving level-crossings                    | 6                 | 0         | 311   | 317               | 24         | 14        | 291   | 329   | 30         | 14        | 602   | 646   |
| Accidents to persons caused by rolling stock in motion | 22                | 25        | 856   | 903               | 123        | 36        | 453   | 612   | 145        | 61        | 1 309 | 1 515 |
| Fires in rolling stock                                 | 0                 | 0         | 0     | 0                 | 0          | Ō         | 0     | 0     | 0          | 0         | 0     | 0     |
| Others                                                 | 0                 | 1         | 2     | 3                 | 6          | 20        | 22    | 48    | 6          | 21        | 24    | 51    |
| Total                                                  | 39                | 31        | 1 172 | 1 242             | 229        | 83        | 771   | 1 083 | 268        | 114       | 1 943 | 2 325 |

Source: Eurostat

#### NEED FOR A COMPREHENSIVE SOLUTION

#### Causes include

- lack of awareness of an on-coming train
- unintended road user error
- driver behaviour and other human factors

#### Aust. Government Recommendations

- State Government (Dec 2008)
- Adopt new developing technologies such as ITS
- Govt. to coordinate support to develop, trial and adopt ITS
- Trial, promote/encourage use of ITS at rail-road interface

#### Federal Government (June 2009)

- Gov. to support ITS research to speed the implementation
- Research into feasibility of cut-in warning systems



Lismore 2006: Tipper truck/Freight train collision (est. cost upwards of \$13.5 million)



Ban Springs 2006: Trailer road train/Passenger train collision (cause driver behaviour and large heavy road vehicles start/stop time)



#### TECHNOLOGY:

#### DEDICATED SHORT RANGE COMMUNICATION (DSRC)

- Vehicle safety research is shifting its focus towards crash avoidance and collision mitigation
- Traditional sensors, like radars, have the following limitations:
  - Limited range (sense immediate vehicles)
  - Limited Field of View (FOV)
  - Expensive
- Cooperative Intelligent
   Transport Systems using
   wireless comm. (DSRC) for
   vehicle safety, mobility and
   commercial apps.

"360 Degrees Driver Situation Awareness" using wireless comm.

#### TRADITIONAL SENSORS





**COOPERATIVE COLLISION WARNING (CCW)** 

## WHY DSRC?

- International standard for wireless vehicular communication at 5.8/5.9 GHz
- Licensed band operation
- 7 channels (10 MHz each) for supporting safety and non-safety applications
- Outdoor high-speed vehicle applications
- Cooperative safety system
  - Passive ⇒ active
  - Reactive ⇒ preventative



## COOPERATIVE INTELLIGENT TRANSPORT SYSTEMS

- Vehicle-to-Vehicle Communications
- Vehicle-to-Infrastructure Communications
- Human-Machine Interface (human factors)

#### Safety

- Intersection collision avoidance
- Cooperative collision warning
- Traffic signal interface

#### Mobility

- Traffic congestion management
- Traffic signal control and management
- Incident management

#### Consumer & Commercial

- Electronic payment
- Fleet management







## SAFETY APPLICATIONS

 Ability of V2V and V2I to address crash scenarios involving non-impaired drivers



% of crash scenarios potentially addressed by technology

(NHTSA Assessment)



#### **SOLUTION**



#### Safety

- Intersection collision avoidance
- Cooperative collision warning
- Traffic signal interface

#### Mobility

- Traffic Congestion Management
- Incident Management
- in-vehicle signage/messaging
- Traffic signal control & management

#### Consumer & Commercial

- Electronic payment
- Fleet management
- Information transfer



## CONCEPT OF THE SAFETY SOLUTION



## PARTNERS























#### PROJECT SCOPE

Development of
Scalable
Simulation
Platform for Level
Crossings

Phase 1

Phase 2

Phase 3

- Specialised ITS Simulation platform for Rail-road crossings
- Development/Implementation of scalable simulation models
- Empirical analysis of typical interactions between rail and road traffic

Development of the ITS Demonstrator System

- Implementation of new algorithms for safety
- Implementation and tuning of new scalable HMI interfaces
- Testing, validation and optimisation before field trial

Field Trial

- Field trial with 100+ vehicles
- Installation in trains, trucks, cars and at rail-road crossings
- Data collection and analysis refining algorithms/implementations



#### SIMULATION PLATFORM ARCHITECTURE



#### SIMULATION PLATFORM



#### SYSTEM IMPLEMENTATION



#### **DSRC Functionality**

- CCH Operation (max higher power for RSU and Train)
- T2V and T2I-I2V for train messaging
- V2V BSM send on sync (network performance)

#### **Mapping & Context Perception**

- Auto-positioning and map interpolation
- Context perception for Head/Tail detection and trajectory estimation (V2V/V2I)
- Intelligent remote dead-reckoning
- Crossing safety detection

#### Warning algorithm

- Train critical position detection
- Intersection collision time calculation
- Extended NHTSA Collision Avoidance algorithm

#### **System Software**

- Logging events and packet information
- System error auto-detection and recovery functions



## SAFETY MESSAGING ALGORITHM AND HMI

Imminent Collision

Possible Collision

Train Present

In Range



## Staged intelligent warnings (in-direct path)

- Higher level audio-visual alerts are only triggered as driver enters a direct path to the level crossing
- All alerts extinguish as soon as vehicle has cleared the crossing or is heading away from crossing

#### Staged intelligent warnings (direct path)

- First warning: presence of train on current path
- Higher levels: triggered through algorithm calculations (NHTSA + presentation time, reaction time, safety margins)
- Combination of audio and video to produce perceptual cascading effect
- Volume of sound and intrusiveness of visual alert increase with level of urgency



Parallel Path

Train Present



#### FIELD TRIALS SCENARIOS

| Orchestrated Scenarios                                                      | Rural         | Urban 1       | Urban 2       |  |
|-----------------------------------------------------------------------------|---------------|---------------|---------------|--|
| (with different approach speeds where applicable)                           | (7 vehicles)  | (70 vehicles) | (30 vehicles) |  |
| 1. Mass vehicles stationary/moving                                          |               | 70            |               |  |
| 2. Pond vohicles approach normandicular to cressing                         | X             | Χ             | Χ             |  |
| 2. Road vehicles approach perpendicular to crossing                         | (40-100 km/h) | (30-60 km/h)  | (30-60 km/h)  |  |
| 2. Donad vashinlar annuar ah manallal ta ana aring                          | Х             | X             | X             |  |
| 3. Road vehicles approach parallel to crossing                              | (40-100 km/h) | (30-50 km/h)  | (30-50 km/h)  |  |
| 4. Road vehicles turn away from crossing (from direct or indirect approach) | Х             | Х             | Х             |  |
|                                                                             |               |               |               |  |
| 5. Road vehicles turn in towards crossing                                   | X             | X             | X             |  |
| Special Scenarios                                                           |               |               |               |  |
| - Hard deceleration on high urgency alert                                   |               |               | X             |  |
| - Obtuse approach (V2V)                                                     | X             |               |               |  |



#### FIELD TRIAL SITE

#### HIGHETT (METROPOLITAN MELBOURNE)



# FIELD TRIALS RESULTS AND DATA ANALYSIS - HIGHETT



#### DIRECT APPROACH

## Perpendicular Approach

## HIGHETT SHOWING LOS QUALITY AND CONNECTIVITY



#### FACTORS AFFECTING CONNECTIVITY AT TRIAL SITES

| Distance to Level Crossing for connectivity levels |                   |        |       |         |                         |                         |  |  |  |
|----------------------------------------------------|-------------------|--------|-------|---------|-------------------------|-------------------------|--|--|--|
| Site                                               | Street            | > 90%  | 50%   | < 10%   | <b>Building Density</b> | Terrain                 |  |  |  |
|                                                    | Dingee Rd         | 0-200m | 700m  | > 1050m | Low                     | Flat                    |  |  |  |
| Dingee                                             | Queen St          | 0-250m | 1050m | > 1700m | Low                     | Flat                    |  |  |  |
|                                                    | King St           | 0-200m | 600m  | > 700m  | Low                     | Flat                    |  |  |  |
|                                                    | Highett Rd (West) | 0-210m | 380m  | > 410m  | Medium                  | Lower than RSU          |  |  |  |
| Highett                                            | Highett Rd (East) | 0-100m | 150m  | > 220m  | High                    | Flat                    |  |  |  |
| 111811611                                          | Railway Parade    | 0-110m | 130m  | > 170m  | Medium                  | Flat                    |  |  |  |
|                                                    | Graham Rd         | 0-220m | 320m  | NA      | Medium                  | Flat                    |  |  |  |
| Cheltenham                                         | Park Rd (West)    | 0-130m | 180m  | > 240m  | Medium                  | Much Higher<br>than RSU |  |  |  |
|                                                    | Park Rd (East)    | 0-360m | NA    | NA      | High                    | Flat                    |  |  |  |

- Connectivity at urban sites (Highett and Cheltenham) is significantly different from that of the rural site (Dingee).
- LOS quality is clearly the primary factor that affects the connectivity.
- Building density and terrain also notably affect the connectivity.



#### DRIVER FEEDBACK

#### **Participant self-reports of Startled**



#### **Participant self-reports of Distraction**





## ROAD MAP AND COMMERCIALIZATION

















































"Smart City Test Bed" Shanghai, China

## TRAM NETWORK

- Ongoing interest in improving safety record and reduction of tram-to-tram and tram-to-road vehicles/pedestrian collisions
- Commercial & safety benefits
  - Reduce accident rates and tram repair costs of franchise:
    - Reduced tram to tram accidents
    - Reduced tram to road vehicle accidents as the road fleet commences utilising the DSRC capability
    - Reduced tram to pedestrian accidents
- Operational applications
  - Speed restrictions, forced stops, other



## TRAM SAFETY POSSIBLE TRIAL SCENARIO BOURKE - SPENCER STREET

- Possible Trial sites
  - Bourke-Spencer
  - Swanston-Flinders
- Collision Avoidance
  - Tram-to-Tram
  - Tram-to-Vehicle
  - Tram-to-Pedestrian
  - Speed restrictions
  - etc.
- Modelling
  - Environment
  - Trams
  - Communication Channel
  - T2T, T2V, T2I, etc
  - HMI
- HMI Safety messaging



## DEMONSTRATION AND LAUNCH VIDEO



## Thank you

## Centre for Technology Infusion

"Bringing ideas to Life"

Professor Jugdutt (Jack) Singh

Director – Centre for Technology Infusion

P: +61 3 9479 3813/3382 M: +61 411 476 976

E: Jack.Singh@latrobe.edu.au

W: http://www.latrobe.edu.au/technology-infusion