

PARTICLE EMISSIONS FROM TYRE AND BRAKE WEAR ON-GOING LITERATURE REVIEW SUMMARY AND OPEN QUESTIONS

Sustainable Transport Unit
Institute for Energy and Transport
Joint Research Centre

8 January 2014

ON-GOING LITERATURE REVIEW

- □ Approximately 100 peer-reviewed papers
- 10 papers presented in international conferences
- □ Several intermediate and final research project reports
- Technical publications from brake and tyre companies
- Several licentiate and doctoral thesis

<u>Literature study: Main issues</u>

- Many studies available but difficult to reconcile due to:
 - Many different sampling methodologies/locations and measurement techniques - Representativeness of realworld emissions?
 - Important differences between LD and HD vehicles
 - Influence of driving conditions Definition of "normal driving conditions"?
 - Lack of a clear definition of non-exhaust emissions especially for tyre and road wear and resuspended material
- Nevertheless, in general, there is consensus on the emission factors

NON EXHAUST EMISSIONS - IMPORTANCE

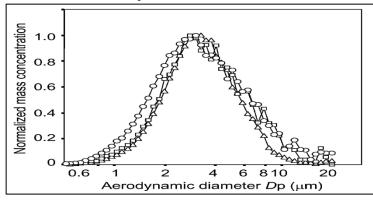
- \Box Exhaust and non-exhaust sources are estimated to contribute almost equally to total traffic-related PM₁₀ emissions (2010)
- □ The relative contribution of non-exhaust sources is expected to increase the forthcoming years due to the tendency of decrease of exhaust emissions

Contributions of specific sources to non-exhaust traffic-related PM₁₀ emissions

Source	PM ₁₀ (%)	
Brake Wear	16-55 *	
Tyre Wear	5-30**	
Resuspension	28-59	

^{*} Significantly lower contributions have been reported in freeways (~ 3%)

^{**} Many studies don't distinguish from road wear

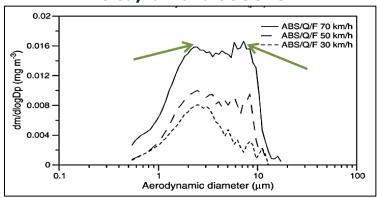


TYRE AND BRAKE WEAR - MASS SIZE DISTRIBUTIONS

BRAKES

- □ 50% of generated BW particles (mass) become airborne. Among these 80% are PM₁₀. The rest may deposit on the road or nearby
- ☐ Mass weighed mean diameters of2-6 µm have been reported

Aerodynamic Particle Sizer



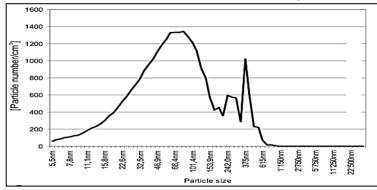
[Example adopted from Iijima et al., 2007]

TYRES

- □ 0.1-10% by mass of generatedTW particles is emitted as PM₁₀
- TW mass distributions appear a clear mode at 50-80 μm, while PM₁₀ mass distribution is bimodal with peaks at 2-3 μm and 5-9 μm

Aerodynamic Particle Sizer

[Example adopted from Gustafsson et al., 2008]

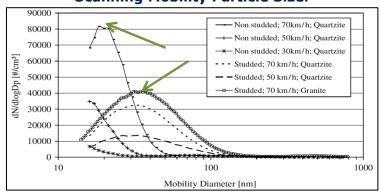


TYRE AND BRAKE WEAR - NUMBER SIZE DISTRIBUTIONS

BRAKES

- BW PN distributions appear to be bimodal with both peaks lying within the fine mode
- □ Some studies report 1st peak at the UF size, while others find at ~ 350 nm

Transmission Electron Microscope



[Example adopted from Gasser et al., 2009]

TYRES

□ PN distributions are unimodal. Some studies report a peak at the UF size (~ 15-50 nm), while others mention that under "normal" driving conditions no UF particles are emitted

Scanning Mobility Particle Sizer

[Example adopted from Dahl et al., 2006]

TYRE AND BRAKE WEAR - CHEMICAL CHARACTERIZATION

Most important chemical constituents of wear particles

	PM _{2.5}	PM _{2.5-10}	Wear particles
Brake Wear	Transition metals (Cu, Fe), Sb (III, V), Sn, Ba, Zr, Al, S, OC>>EC	FeO, Fe ₂ O ₃ , Cu oxides, Sb (III), Sb (V), Sn, Ba, Zr, Al	Cu, Fe, Sb (III, V), Sn, Ba, Zr, Al, S, PAHs, n- alkanes, n-alkanoic acids, benzaldehydes
Tyre Wear	Zn, organic Zn, Cu, S, Si, Organic compounds, EC	Zn, organic Zn, Cu, Si, Mn	Zn, Cu, S, Si, PAHs, benzothiazoles, natural resins, n-alkanes, EC

NEED FOR: Identification of organic constituents in PM_{10} brake and tyre wear particles and investigation of the chemical composition of modern lining materials

<u>TYRE AND BRAKE WEAR - EMISSION FACTORS</u>

EFs derived from road simulation studies

	PM _{2.5} (mg km ⁻¹ veh ⁻¹)	PM ₁₀ (mg km ⁻¹ veh ⁻¹)
Brakes LDV	2.1-5.5	2.0 8.0
Tyres*	-	3.5 9.0

^{*} Friction tyres

EFs derived from receptor modeling

	PM _{2.5} (mg km ⁻¹ veh ⁻¹)	PM ₁₀ (mg km ⁻¹ veh ⁻¹)
Brakes LDV	0.0-5.0	1.0 8.8
Tyres* LDV	0.3-5.0	6.0-13

^{*} Friction tyres

- \Box Brake and tyre wear PM₁₀ EFs of HDVs are estimated to be approximately one order of magnitude higher compared to LDVs
- ☐ Much higher PM₁₀ EFs have been reported in case of studded tyres

Health effects of non-exhaust particles

- Non-exhaust traffic related PM emissions significantly contribute to ambient PM10 and PM2.5
- Several studies carried out on animals or in-vitro cells with sometimes contradictory results (different techniques and methodologies used) – Difficulties in extrapolating the results to humans
- Fate of non-exhaust particles: Residence time?
 Dispersion? Exposure?
- Soil and water contamination? (Not considered in the JRC literature study and apparently not well investigated)

What abatement measures?

- Minimizing particle generation by changing chemical composition/physical properties of brakes and tyres?
 - Are particle generation mechanisms and influencing factors sufficiently known?
 - Only in the case of particles from brake wear the source is linked exclusively to the vehicle
- Traffic and/or driving behaviour control measures? (e.g. speed limits, Low Traffic Zones, congestion charges,...)
- Road conditions/characteristics? (e.g. road material, road maintenance, wetting/cleaning,...)
- Cost/effectiveness?

On-going research activities

- Brake industry involved in research studies to better understand particle generation mechanisms and to evaluate the possibility of reducing particle generation (e.g. EU funded REBRAKE)
- WBCSD (World Business Council for Sustainable Development) - Tire Industry Project (TIP)
- Goal: Anticipate the potential long term environmental and health issues relating to tyre materials, Tyre & Road Wear Particles, end of life tyres and recycling management