transport & climate adaptation Piet de Wildt Ministry of Infrastructure and the Environment The Netherlands # the Netherlands' exposure profile - About 400 km of Rhine river - 60% flood prone - About 9 million inhabitants below flood level - GDP 600 bln euro - High protection level - 3500 km of flood defences, - hundreds of locks, sluices, pumping stations ### **Global Circulation Models** - changes in temperature, wind precipitation at a global level - overall picture, limited use for local impacts - grid 200 x 200 km Mean temperature change SRES A2 scenario ## regional climate models - better representation spatial detail: land-see interaction, topography - better representation small scale events: precipitation extremes, wet-day-frequency, land atmosphere interaction - grid up to 10 x 10 km RCM used for regional scenarios ## climate change in the Netherlands # climate change in the Netherlands depends on - global temperature rise - change in local wind regime # the KNMI climate scenarios: change in 2050 relative to 1990 | Global temperature rise
Change in air circulation patterns | | G
+1°C
no | G+
+1°C
yes | W
+2°C
no | W+
+2°C
yes | |---|---|--------------------------------|----------------------------------|--------------------------------|----------------------------------| | Winter ³ | average temperature coldest winter day per year average precipitation amount number of wet days (≥ 0.1 mm) | +0.9°C
+1.0°C
+4%
0% | +1.1°C
+1.5°C
+7%
+1% | +1.8℃
+2.1℃
+7%
0% | +2.3°C
+2.9°C
+14%
+2% | | | 10-day precipitation sum exceeded once in 10 years maximum average daily wind speed per year | +4%
0% | +6%
+2% | + 8 %
-1% | +12%
+4% | | Summer ³ | average temperature warmest summer day per year average precipitation amount number of wet days (≥ 0.1 mm) | +0.9°C
+1.0°C
+3%
-2% | +1.4°C
+1.9°C
-10%
-10% | +1.7°C
+2.1°C
+6%
-3% | +2.8°C
+3.8°C
-19%
-19% | | Sea level | daily precipitation sum exceeded once in 10 years potential evaporation absolute increase | +13%
+3%
15-25 cm | +5%
+8%
15-25 cm | +27%
+7%
20-35 cm | +10%
+15%
20-35 cm | ## scenario tailoring assessment of impact of new scenarios on **Rhine discharge** #### Without circulation change courtesy Hendrik Buiteveld et.al. ## scenario tailoring assessment of impact of new scenarios on **Rhine discharge** #### With circulation change courtesy Hendrik Buiteveld et.al. climate shows spatial planning ## take away messages Climate change effects: where, what, when on infrastructure, modes, logistics - sealevel rise: port infrastructure/accessibility - river discharge: inland transport - downpour: road safety, capacity but not only technology, effects on human behavior are important as well. ## take away messages ### awareness raising is necessary waterway: medium road/rail: rather low ## action is urgent do we have a message for UNFCCC CoP 21 (Paris, December 2015) ## transport & climate adaptation ## thank you Piet de Wildt Netherlands ministry of Infrastructure and the Environment piet.de.wildt@minienm.nl ## the climate system # uncertainty