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 I. Mandate 

1. This document has been prepared in line with the output/activities of cluster 2: 
“Transport trends and economics (including Euro-Asian transport links)” of the programme 
of work of the transport subprogramme for 2016-2017 (ECE/TRANS/2016/28/Add.1, para. 
2.2) and the Terms of Reference of the United Nations Economic Commission for Europe 
(UNECE) Group of Experts on Climate Change impacts and adaptation for transport 
networks and nodes (ECE/TRANS/2015/6) as adopted by the Inland Transport Committee 
on 24-26 February 2015 (ECE/TRANS/248, para. 34). 

 II. Climate Change: Recent Trends and Projections  

 A. Recent Climate Projections 

2. The now better recorded/understood climatic factor dynamics (e.g. land/sea surface 
temperature, sea level, arctic ice extent, glacier mass balance) suggest a significant and, in 
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some cases, accelerating climatic change. This information and more recent evidence 
suggest that transport-affecting climatic factors (ECE, 2013) are ‘deteriorating’.  

3. The ocean will warm in all RCP scenarios. The strongest ocean surface warming is 
projected for the subtropical and tropical regions. At greater depths, warming is projected to 
be most pronounced in the Southern Ocean. Best estimates of ocean warming in the upper 
100 m are about 0.6 °C (RCP2.6) to 2.0 °C (RCP8.5), and for the upper 1,000 m 0.3 °C 
(RCP2.6) to 0.6 °C (RCP8.5) by the end of the twenty-first century. For RCP4.5, half of the 
energy taken up by the ocean will be within the uppermost 700 m and 85 per cent in the 
uppermost 2000 m. Due to the long-time scales of this heat transfer from the surface to 
deeper waters, ocean warming will continue for centuries, even if GHG emissions were 
stabilized (IPCC, 2013).  

4. With regard to the atmospheric air temperature, a long-term increasing trend is clear. 
Concerning temperature projections for the end of the twenty-first century, it is expected 
that the atmospheric temperature will increase between 1.0 and 3.7 °C (mean estimates, see 
Table 1), depending on the scenario. Forced by a range of possible Greenhouse Gas (GHG) 
concentration scenarios (IPCC, 2013), the central (mean) estimate for the warming has been 
predicted to be 1.0-2.0°C for the period 2046-2065 compared to the mean of the period 
1986-2005, whereas by the late twenty-first century (2081-2100) increases of 1.0-3.7 °C are 
projected. However, the range of the projections broadens to 0.3-4.8 °C when model 
uncertainty is included 

Table 1  
Forecasts of global mean surface temperature and global mean sea level changes for 
the period 2081-2100 (means and likely ranges) with respect to the period 1986-2005, 
according to different scenarios (after IPCC, 2013)  
(Predictions are made according to 4 radiative forcing scenarios (Representative Concentration Pathways-RCP)1: 

RCP 8.5, 6184 Gt C02 (2012-2100 cumulative CO2 emissions); RCP 6.0 3890 Gt C02; RCP 4.5, 2863 Gt CO2; 

and RCP 2.6, 991 Gt CO2. Global mean surface temperature changes are based on the CMIP5 ensemble (5-95per 

cent model ranges). Sea level rise estimates are based on 21 CMIP5 models (5-95per cent model ranges). The 

contributions from ice sheet rapid dynamical change and anthropogenic land water storage are treated as having 

uniform probability distributions, and as largely independent of scenario, as the current knowledge state does not 

permit quantitative assessments of the dependence.2) 

Scenario 

Temperature Sea level rise 

Mean (oC) Likely Range (oC) Mean (m) Likely Range (m) 

RCP 2.6 1.0 0.3-1.7 0.40 0.26-0.55 

RCP 4.5 1.8 1.1-2.6 0.47 0.32-0.63 

RCP 6.0 2.2 1.4-3.1 0.48 0.33-0.63 

RCP 8.5 3.7 2.6-4.8 0.63 0.45-0.82 

  

 1 The recent IPCC Assessment Report AR5 (2013) forecasts are made on the basis of the 
Representative Concentration Pathways-RCP scenarios and not the IPCC SRES scenarios. The CO2 
equivalent concentrations have been set to (e.g. Moss et al., 2010): RCP 8.5, 1370 C02-equivalent in 
2100; RCP 6.0 850 CO2-equivalent in 2100; RCP 4.5, 650 CO2-equivalent in 2100; and RCP 2.6, 
peak at 490 CO2-equivalent before 2100 (Moss et al., 2010).  

 2 According to the scenarios the sea level will not stop rising in 2100, but will continue rising during 
the following centuries; median sea level rises of 1.84 for the lowest and 5.49 m for the highest 
forcing scenario (RCP 8.5) have been projected for 2500 (Jevrejeva et al., 2012).  
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 1.3 Implications for Transport: A short review  

31. With regard to the sensitivity of transport networks to CV & C, a recent review 
(ECE, 2013) has found that: (a) transportation assets tend to be more sensitive to extreme 
events, such as storm surges, heavy precipitation events, heat waves and high wind events 
than to incremental changes in the mean of the climate variables; (b) maintenance, traffic 
conveyance and safety are generally more sensitive to climate forcing than physical assets, 
as thresholds for e.g. delaying/cancelling transport services are generally lower than those 
for damages to infrastructure and (c) transport assets are sensitive to stressors whose 
occurrence is relatively unlikely in comparison to typical weather variability. For example, 
the superstructure of the US Gulf Coast bridges proved to be vulnerable to loading from 
direct wave impacts due to the unprecedented coastal sea levels induced by the storm surge 
of the Katrina (2005) hurricane (USDOT, 2012).  

32. Hydro-meteorological extremes, such as heavy rainfall/floods and droughts are 
already causing substantial damages to transport infrastructure and services. Changes in 
extreme precipitation may result in river floods that might be particularly costly for inland 
transport networks (Hooper and Chapman, 2012), as major roadways and railways are 
located within and/or crossing flood plains; they can also have significant effects on 
bus/coach stations, train terminal facilities and inland waterway operations. There can be 
direct damages during, and immediately after, a heavy precipitation event that require 
emergency response as well as measures to support the structural integrity and maintenance 
of roads, bridges, drainage systems, and tunnels (USDOT, 2012). 

33. Road and railway networks are projected to face significant risks of flooding as well 
as bridge scouring, whereas the projected increases in downpours/floods will also cause 
more rain-related road accidents (due to vehicle and road damages and poor visibility), 
delays, and traffic disruptions (e.g. Hambly et al., 2012). Road networks are expected to be 
severely affected by the projected increases in heavy downpours and flooding, through 
diverse impacts on the different types of pavement, asphalt and concrete; these would 
require adaptive maintenance practices such as construction of adequate drainage and the 
use of permeable pavements and polymer modified binders (e.g. Willway et al., 2008). 
Regions where flooding is already common will face more frequent and severe problems. 
Standing flood waters could have severe impacts and high costs; for example, the costs due 
to long-term road submersion in Louisiana have been estimated as US$50 million for 200 
miles of the state highways (Karl et al., 2009). In the USA, adaptation costs for (road and 
rail) bridges vulnerable to river flooding have been estimated as $140-$ 250 billion through 
the twenty-first century (Wright et al., 2012). For the EU27 cost estimations are lower: 
future costs for bridge protection against flooding have been estimated as up to €0.54 
billion per year (EC, 2012; ECE, 2015).  

34. Railway infrastructure could be also impacted severely, with impacts including track 
and line side equipment failure, flood scours at bridges and embankments due to high river 
levels and culvert washouts, landslides, as well as problems associated with personnel 
safety and the accessibility of fleet and maintenance depots. In the UK, costs related to 
extreme precipitation/floods and other extreme events, which are already estimated as £50 
million a year, might increase to up to £500 million a year by the 2040s (Rona, 2011). 
Extreme winds are also projected to be more catastrophic in the future (e.g. Rahmstorf, 
2012), particularly at coastal areas where they can cause coastal defence overtopping and 
flooding of coastal/estuarine railways. Extreme winds could also cause infrastructure 
failures and service interruptions though wind-generated debris (e.g. (PIARC, 2012; ECE, 
2013; 2015).  

35. The projected increase in the frequency of heat waves may also pose substantial 
challenges in the railway, road (and airport) operations and services, due to rail buckling, 
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road pavement damages and necessary reductions on aircraft payloads. The projected 
increases in the number of days with temperatures above about 38 0C (Vogel et al., 2017) 
can lead to increasing road infrastructure failures. Drier and hotter summers will cause 
pavement deterioration and/or subsidence, affecting performance and resilience (PIARC, 
2012). Model predictions (EC, 2012) have estimated the additional annual costs for the 
upgrade of asphalt binder for the EU27 under the SRES scenario A1B4 as €38.5-135 
million in the period 2040-2070 and €65-210 million in 2070-2100. Nevertheless, it should 
be noted that as road surfaces are typically replaced every 20 years, such climate change 
impacts could be considered at the time of replacement. 

36. Arctic warming may lengthen the arctic shipping season and introduce new shipping 
routes. There may be new economic opportunities for Arctic communities, as reduced ice 
extent facilitates access to the substantial hydrocarbon deposits (at Beaufort and Chukchi 
Seas) and international trade. At the same time, Arctic warming will result in (a) greater 
coastal erosion due to increased wave activity at the polar shorelines of Canada, the Russian 
Federation and the USA (e.g. Lantuit and Pollard, 2008) and (b) increasing costs in the 
development and maintenance of transport infrastructure due to thawing permafrost (ECE, 
2015). Permafrost thawing (e.g. Streletskiy et al., 2012) presents serious challenges for 
transportation, such as settling and/or frost heaves that can affect road structural integrity 
and load-carrying capacity (ECE, 2013). In Arctic areas many highways are located in areas 
with already discontinuous, patchy permafrost, resulting in substantial maintenance costs as 
well as usage restrictions (Karl et al., 2009). Such disruptions are projected to increase 
substantially under the predicted increases in the extent/depth of permafrost thaw (EEA, 
2015a). 

37. Inland waterways can also be affected by both floods and droughts. Floods can have 
major impacts such as suspension of navigation, silting, changes in the river morphology 
and damage of banks and flood protection works (ECE, 2013). Inland waterways can also 
be affected by low water levels during droughts. Recent research5, which has used the 
Rhine-Main-Danube (RMD) corridor as a case study, has found that over a period of 20 
years, average annual losses due to low water levels were about €28 million (see also 
Jonkeren et al., 2007). Projections from different climate models, however, do not show 
significant effects of the low flow conditions on the RMD corridor until 2050; nevertheless, 
‘dry’ years may lead to a 6-7 per cent increase in total transport costs compared to 'ʹwet'ʹ 
years.  

38. Impacts of CV & C on the European transport systems were studied in two recent 
European projects6. Both projects found that there is a lack of reliable information relevant 
to the vulnerability of the different transport modes. Direct costs borne by the transport 
sector, such as those from infrastructure repair/maintenance and vehicle damage and 
increased operational costs, have been estimated for the period 1998-2010 as € 2.5 billion 
annually, and indirect costs from transport disruptions as €1 billion annually. Rail has been 
the most affected transport mode, with ‘hot spots’ in E. Europe and Scandinavia, whereas 
the effects on roads (mainly from weather related road accidents) have been found to be 
more evenly distributed.  

39. Coastal transport infrastructure (coastal roads, railways, seaports and airports) will 
be dis-proportionally impacted by the CV & C as, in addition to the above challenges, they 
will have to adapt to increasing marine coastal flooding. In the ECE region, mean SLR and 

  

 4 This scenario is roughly equivalent to the IPCC AR5 scenario RCP6.0. 
 5  EU FP7-ECCONET Project, www.tmleuven.be/project/ecconet/home.htm   
 6  The EU-FP7 WEATHER www.weather-project.eu  and EWENT Projects (www.weather-

project.eu/weather/inhalte/research-network/ewent.php) 
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increasing storm surges and waves, particularly along the NW Europe, the Baltic Sea and 
the NE Pacific coast the of US and Canada (e.g. Vousdoukas et al., 2016a; Mentaschi et al., 
2017), may induce major impacts, including flooding of roads, rail lines and tunnels in 
coastal areas. Coastal inundation can render transportation systems unusable for the 
duration of the event and damage terminals, intermodal facilities, freight villages, storage 
areas and cargo and, thus, disrupt supply chains for longer periods (ECE, 2013; 2015). 
Pecherin et al. (2010) have estimated that one meter increase in the ESLs above the 
inundation level of the current 1-in 100 year-storm event7, would result in damages and 
repair costs of up to €2 billion for mainland French A-roads, excluding operational and 
connectivity costs. Another study (EC, 2012) has provided an initial estimate of the future 
risk of the European coastal transport infrastructure due to mean sea level rise-SLR and 
storm surges on the basis of a comparison between the coastal infrastructure elevation and 
the combined level of 1 m mean SLR and the 100-year storm surge height; it was found that 
coastal transport infrastructure (e.g. coastal roads) at risk represents the 4.1 per cent of the 
total, with an asset value of about €18.5 billion. As however, more detailed projections on 
future extreme sea levels-ESLs and coastal wave power are starting to become available 
(Vousdoukas et al., 2016b; 2017; Mentaschi et al., 2017) for the ECE region (and beyond), 
it will be a worthwhile exercise to assess again the potential inundation impacts on the ECE 
transport infrastructure under different CV & C scenarios.  

40. Finally, it should be noted that the transport industry is a demand-driven industry. 
Climate Variability and Change can have significant effects in, almost all, sectors of 
economy, and thus affect indirectly transport services through e.g. changes in commodity 
demand and tourism transportation (ECE, 2015). 

 1.4. Summary  

41. In this Chapter a review of the long-term and recent trends and variability of 
different climatic factors that can affect transportation has been presented, together with a 
review of the recent projections on the evolution of these factors in the twenty-first century 
under different emission scenarios. The major findings are summarized below.  

  Trends 

42. There is overwhelming evidence for a warming world since the nineteenth century 
from scientific observations from the upper atmosphere to the ocean deeps. The global 
average surface temperature has risen by 1.1 0C since the late nineteenth century, with the 
most recent 6-year period (2011-2016) being the warmest on record. 2016 has also been the 
hottest year on record (1.1 0C higher than the 1901-2000 average of 14.0 0C). In the ECE 
region, temperatures were more than 1 0C above the 1961-1990 average over most of 
Europe, Northern Asia and the South-Western US and reaching about 3 0C above average 
in regions of the Russian Arctic. The integrated ocean heat content within the 0-700 m layer 
was higher than any previous time and sea surface temperatures (SSTs) were above average 
in most of the oceans. Evidence suggests that warm extremes have become warmer and 
cold extremes less cold in many regions. 

43. Land precipitation data reveal an increasing trend in the twentieth century, 
especially in mid and high latitudes and a strong regional variability which, in many cases, 
appears to be influenced by the large climatic modulations such as the ENSO and NAO. 
Land precipitation in the most recent period (2011-2016) was strongly influenced by the 

  

 7  Costs assumed in the study: average linear property cost at €10 million/km of road surface; repair 
costs at about €250 thousands/km 
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ENSO, i.e. the La Niña conditions in 2011-2012, and the strong El Niño of 2015-2016. In 
2016, precipitation above the 90th percentile was observed in a large swath of land 
extending from Kazakhstan across the Western Russian Federation into Finland, N. Sweden 
and Norway; at the same time, large areas of the Northern and Central Russian Federation 
were dry, with much of the region between the Urals and Lake Baikal and to the north of 55 
0N showing precipitation below the 10th percentile.  

44. There has been also an increase in heavy precipitation events (in intensity and/or 
frequency) in many areas of the ECE region. One of the clearest trends appears to be the 
increasing frequency/intensity of heavy downpours in areas that there is already a 
significant flood risk (for the 1 in a 100-year events), such as the Central and Eastern 
Europe, Central Asia and along the large S-N drainage basins of Siberia. Consequently, 
flood damages are expected to rise considerably by the end of the century, being generally 
higher in the north than in the south. In some regions, there is also evidence to suggest 
increases in the frequency/intensity of heat waves, as well as of droughts (e.g. in the 
Mediterranean). 

45. Over the past few decades, there appears to be a downward trend in the 
extent/duration of snow cover in the Arctic. Snow cover has declined (in the month of June) 
by 11.7 per cent per decade over the period 1967-2012. However, this trend is not uniform; 
some regions (e.g. the Alps and Scandinavia) show consistent decreases at low elevations 
but increases at high elevations, whereas other regions (e.g. the Carpathians, Pyrenees, and 
Caucasus) show no consistent trends. There has been a decrease in the number of frost days 
in mid-latitude regions. Arctic sea ice continued its steep decline. In 2016, sea ice extent 
was well below average and at record low levels for large parts of the year; March seasonal 
maximum was 14.52 million km2, the lowest seasonal maximum in the 1979-2016 satellite 
record. Mountain glaciers also continued to decline. Permafrost extent also continued to 
decrease; recently, there has been warming down to 20 m depth in Arctic permafrost 
regions.  

46. Since 1860, sea level has increased by about 0.20 m, with the rate of increase 
becoming progressively greater, particularly since the 1990s. SLR trend over the satellite 
record (1993-2015) has been 3-3.2 mm yr−1, considerably higher than the 1900-2010 
average (1.7 mm year−1).  

47. Extreme hydro-meteorological events (e.g. heat and cold waves, tropical cyclones, 
floods, droughts and intense storms) causing significant losses/damages also  appear to be 
on the rise; fortunately, human loss did not follow the steep upward trend of the economic 
losses associated with these extreme events.  

  Projections 

48. Recent projections on the climatic factors that could impact transport infrastructure 
and operations are presented below. Generally, challenges that are already imposed by 
certain climatic factors on the present day transport infrastructure will increase 
significantly.  

49. By the end of the twenty-first century, the mean atmospheric temperature is 
projected to increase between 1.0 and 3.7 0C above the mean temperature of the period 
1986-2005, depending on the RCP scenario. Oceans will warm under all scenarios, with the 
highest SSTs projected for the subtropical and tropical regions. Increases in hot extremes 
and decreases in cold extremes are expected by the end of the twenty-first century, 
particularly in mid-latitude regions. Large regional differences are projected for 
temperature maxima (TXX); these may increase in central Europe, central N. America and 
N. Australia. The frequency/duration of heat waves is projected to increase for many 
regions (and in Europe), particularly under high emission scenarios. For most land regions 
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it is considered likely that the frequency of the current 20-year hot event will be doubled; in 
some areas, such an event might even occur every 1-2 years. At the same time, the 
occurrence of the current 20-year cold event will substantially decrease in the future.  

50. As temperature rises, average precipitation will exhibit substantial spatial variation 
in its patterns. Land precipitation is projected to increase in high and mid latitudes and 
decrease in sub-tropical arid and semi-arid regions. Extreme precipitation events will likely 
be more intense over most of the mid-latitude and wet tropical regions. For central and NE 
Europe, projections demonstrate large increases (by 25 per cent) in heavy precipitation 
events by the end of the century. At the same time, widespread droughts across most of 
South-Western North America are projected for the mid to late twenty-first century. In 
comparison, decreases are projected for the duration/intensity of droughts in Southern 
Europe and the Mediterranean, central Europe and other areas of North America.  

51. Snowfall and rainfall are projected to increase in the Arctic regions, mostly in 
winter. However, although winter maximum snow depth will likely increase (particularly in 
Siberia), early melt will result in considerable decreases (by up to 25 per cent) in spring 
snow cover in the Northern Hemisphere (NH). Mountain glaciers and ice caps are projected 
to show a 10 to 30 per cent mass reduction by the end of the century. Models also project 
accelerating thawing of permafrost, due to rising temperatures and changes in snow cover. 
Current rates of warming of the European permafrost surface are 0.04 - 0.07 0C yr-1 and, 
although there are challenges in assessing permafrost change, its extent in 2100 is expected 
(medium confidence) to decrease by 37 per cent and 81 per cent for the RCP2.6 and 
RCP8.5 scenarios, respectively.  

52. It is also likely that the Arctic sea ice will continue to decrease in extent/thickness, 
although there will be considerable inter-annual variability. In the period 2081-2100, 
reductions in Arctic ice extent of 8 to 34 per cent (in February) and of 43 to 94 per cent (in 
September) are projected (compared to the average extents in 1986-2005) for RCP2.6 and 
RCP8.5. These may result in the development of major Arctic shipping routes which, 
however, could be associated with environmental risks and development difficulties, such 
as those imposed by the projected permafrost thaw on the development/maintenance of the 
necessary coastal and land transport infrastructure to service these routes.  

53. CV & C risks to ECE coastal transport infrastructure are also expected to rise. Sea 
level rise for the ECE region depends on the emission scenario, with greater rises predicted 
in the case of additional ice sheet melting. For the North Sea coast, for instance, mean sea 
level rises of 0.40 to 1.05 m are expected, with slightly lower rates projected for the 
Mediterranean coast. Larger storm surge levels are projected for the Atlantic, North Sea and 
Baltic coasts (and ports) under all scenarios and extreme storm events. For Southern 
Europe, however, projections are better, with expected changes in the storm surge levels 
mostly in the ±5 per cent band.  

54. Recent research suggests a negative trend in the wave energy fluxes-WEF (for the 
100-year return event) along the ECE coast, with the exception of the NE Pacific and the 
Baltic coasts which are projected to show increases in the WEF of up to 30 per cent. With 
regard to the extreme sea levels (ESLs) and taking into account the presence/standards of 
coastal flood protection works and uncertainties concerning the probability of their failure, 
about 5 million people in Europe could potentially be affected by the present day 100-year 
ESL. Averaged over Europe’s coastlines, such an event is projected to occur approximately 
every 11 years by 2050, and every 1 to 3 years by 2100 (RCP4.5 and RCP8.5). Hence, the 
millions of Europeans currently at risk once every 100 years may face flooding at an almost 
annual basis by the end of the century. Some regions are projected to experience an even 
higher increase in the frequency of occurrence of extreme events, most notably along the 
Mediterranean and the Black Sea; in these areas, such events are projected to occur even 
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more often. It appears that the effects of these events on the coastal transportation 
infrastructure (and related supply chains) should be urgently assessed in more detail.  
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